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Abstract — There is increased interest among network ad-
ministrators and service providers to estimate quality of service
parameters associated with their network operations. Two ap-
proaches are currently used for collecting and modeling network
data: passive monitoring of link-level data or active probing to
obtain path-level measurements. In this paper, we investigate the
estimation of link delay distributions based on active network to-
mography based on information gathered from end-to-end mul-
ticast measurements. We derive the maximum likelihood estima-
tor, establish its asymptotic properties, and investigateits finite-
sample performance. Comparisons with a heuristic estimation
scheme proposed in the literature are also made.

I. I NTRODUCTION

Background:Modern computer and communications networks have
evolved into large and complex systems that are decentralized and
loosely controlled. As a result, it has become increasinglydifficult to
monitor and assess their performance and determine qualityof ser-
vice. Nevertheless, providers are constantly seeking waysto monitor
their network with regard to characteristics such as trafficintensity,
delay, loss, dropped packets, etc. in order to ensure high quality of
service to users. Additionally, the networks are often vulnerable to
malicious attacks, for example distributed denial of service (DDoS)
attacks in which many attacker sites send messages to a victim site
in order to disable it. As an example, consider the recent Code Red
virus [11] which coopts personal computers as ’zombies’ anduses
them to conduct DDoS attacks. There is a critical need for techniques
to detect and locate these attacks, particularly as they become more
widespread and powerful.

While it may be fairly simple for a provider to investigate prob-
lems within his own domain, detecting and locating problemsthat
arise in other portions of the Internet is not nearly as easy.Tradi-
tional queuing and traffic models are not adequate for capturing the
overall behavior of these complex networks. Currently, there are two
basic approaches that have been found useful for studying and char-
acterizing network performance: active and passive monitoring. Pas-
sive traffic measurement involves capturing packets as theyare sent
across links and collecting information about them. This information
is usually collected at the link level and used to estimate path-level
characteristics. Active probing, on the other hand, involves sending
probes across a network and keeping track of information such as
numbers of packets sent and received and the length of time ittakes
packets to travel from a root node to the receiver node. This informa-
tion is then used to estimate internal link-level parameters from the
end-to-end path-level measurements.
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Both of these schemes require estimation of network performance
parameters from a limited set of link-level or path-level measure-
ments. Vardi [1] introduced the termnetwork tomographyto describe
this class of estimation problems. His paper considered theestimation
of source-destination traffic intensity along links in a network based
on measurements of traffic flow on directed links. There has been
considerable work in this area recently, covering many aspects of the
network tomography problem. In this paper, we focus on estimating
internal link-level parameters (specifically delay distributions) from
multicastprobing schemes (to be described below). Past work on
this problem is reviewed in Section 1.3. For an excellent up-to-date
review of the state of network tomography, readers are referred to
Coates, Hero, Nowak, and Yu [2].
Framework and Notation: Networks can typically be captured by
graphs with nodes representing computers or routers and edges rep-
resenting the links between them. The objective is to monitor the
network’s activity by relying on measurements obtained from a lim-
ited number of nodes usually located at the periphery of the network,
where access is easy. The monitoring scheme relies onactive prob-
ing of the network, with packets sent from a source node to a set of
destination nodes where the end-to-end (source-destination) delays
are recorded. The time delays areadditiveacross links and consist
of both propagation (latency) delays and router processing(queuing)
delays along the path. In this paper we focus onmulticasttransmis-
sions: at internal routing nodes where forking occurs (see node 1 in
Figure 1), each packet isreplicatedand sent along each branching
path. So the packet is effectively sent from the root node toall of the
receiver nodes. The key to multicast transmissions for network to-
mography is that it introducesdependenciesbetween end-to-end de-
lays measured by different receivers, which in turn enablesinferences
about network internal links characteristics. We will restrict attention
to networks whose topologies can be represented by trees whose reg-
ularity renders the inference problem computationally tractable.

Next, we introduce the necessary definitions and notation. Refer
to Figure 1 throughout for a concrete graphical representation. Let
T = (V, E) denote a tree with node setV and link (edge) setE .
The nodes will all be denoted by a number and each link will be
named after the node at its terminus. Let{0} ∈ V denote theroot
node from which all multicast packets originate. LetR denote the
set of receiver nodes. The parent of nodek ∈ V will be denoted by
f(k). Note that all nodes, except the root node, have a parent node.
Let the functionf i(k) be defined in the following recursive manner:
f i(k) = f(f i−1(k)) with f1(k) = f(k). All nodes inV − R have
a set of child nodes, with the set of children of nodek denoted by
d(k). A nodek is said to be in levelL = 1, 2, . . . if fL(k) = 0.
The deepest level of the tree will be denoted byL. The trees that we
study in this paper are assumed to bebinary andsymmetric. Thus,
all of the nodes except the root node and receiver nodes have exactly
two children, and all nodes inR (receiver nodes) are in levelL (level
of the tree).
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Figure 1: An example of a tree topology with some of the
notation used illustrated

We will assume the following framework for the data collection,
modeling, and inference. (This formulation is common to most of the
other papers in the literature as well.) The delay distribution for each
link will be assumed to bediscrete, and we will estimate it nonpara-
metrically. Let the delay accumulated on each linkk be denoted by
Xk. Then,Xk will take values in the set{0, q, 2q, . . . , bq} whereq is
the unit of measurement andb is an integer that defines the maximum
delay for each link. It is assumed throughout that the valuesof q and
b are common to all link delay distributions. Also, for the sake of
simplicity, we will not consider in this paper the possibility thatXk

could be infinite, which corresponds to the case where the packets are
dropped or lost along their path. This extension can be handled easily
and will be addressed in future work.

We will consider inference under the stochastic assumptionthat
the individual link delaysXk are mutually independent. (This as-
sumption is common in the current literature. Extensions tospa-
tial and temporal dependence will be studied in future work). Let
αk(i) = P{Xk = iq}, i = 1, . . . , b and k ∈ V. In the
rest of the paper, for notational convenience, we will drop the use
of the universal measurement unitq. Further, we will denote by
~αk = (αk(1), αk(2), . . . , αk(b))′, a column vector containing all
of the link k delay probabilities. Let~α = {~αk, k ∈ V}, a column
vector containing all the parameters of interest that have to be esti-
mated.

Let Yk denote the accumulated delay at nodek. For example, in
Figure 1,Y3 = X1 + X3 and Y5 = X1 + X2 + X5. Only the
accumulated (end-to-end) delays at the receiver nodes are recorded;
i.e., we observe only~Y = {Yj ; j ∈ R}. Note that forj ∈ R,
Yj ∈ {0, ...,Lb} whereL is the number of layers in the tree. Each
multicast probe packet experiences a delay on each link along its path.
Let X = {0, 1, . . . , b}|E| be the space of all possible link delays.
Hence,~x ∈ X is an |E|-tuple describing the individual link delays
that the probe experienced. Let~y(~x) be the multicast end-to-end
measurement that results when~x occurs. Note that this is a many-
to-one function; there are several~x outcomes that result in the same
~y. Denote byY = {~y(~x); ~x ∈ X} the space of all possible multicast
results.

Let us consider an example on the two-layer tree shown in Fig-
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Figure 2: Two-Layer Tree

ure 2. Letb = 1, so Xk ∈ {0, 1}. Suppose that a probe experi-
ences delays of 1, 0 and 1 on links 1, 2, and 3, respectively. Then,
~x = (1, 0, 1) and the observed set of end-to-end delays at receivers
1 and 2 would be~y = ~y(~x) = (1, 2). For this tree, the entire set of
individual link outcomes is given by

X = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1)

(1, 0, 1), (1, 1, 0), (1, 1, 1)},

while the set of observable outcomes is given by

Y = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)}. (2)

Let the variable~X = {Xk; k ∈ V} represent the collection of all
individual link delays. The probability of the above outcome is given
by

P{ ~X = (1, 0, 1)} = α1(1)α2(0)α3(1), (3)

and the probability of the observed end-to-end delay by

P{~Y = (1, 2)} = α1(0)α2(1)α3(2) + α1(1)α2(0)α3(1) (4)

because there are two sets of link delays that give rise to this particular
end-to-end delay pair.
Literature Review: There have been several papers recently on the
estimation of link-level parameters based on end-to-end path-level
measurements. They consider bothunicastand multicast measure-
ment schemes. Unicast refers to a transmission scheme wherethe
root node sends (separate) packets, one at a time, to the receiver
nodes. Unicast schemes suffer from identifiability problems, and
there have been modifications such as back-to-back unicast that have
been proposed [2]. We consider only multicast schemes here.The
primary focus on past work has been on estimating link-levelloss
rates and delays. Link loss refers to the probability of dropping or los-
ing packets of information due primarily to buffer overflowsat router
nodes along a link. The multicast link loss problem was studied in
Cáceres, Duffield, Horowitz, and Towsley [8]. They deviseda clever
method to compute the maximum likelihood estimates (MLEs) un-
der the assumption of spatial and temporal independence. However,
the computation of the variance-covariance matrix and associated in-
ference is complicated. A computationally simpler approach based



on various least-squares methods with superior performance in small
samples is considered in Xi, Michailidis, and Nair [14].

In a recent paper, Shih and Hero [9] have considered link delay es-
timation based on unicast probing schemes. This paper assumes that
the link delay distributions are a mixture of Gaussian distributions
and a point mass at zero. They discuss the identifiability problem as-
sociated with unicast schemes and present a sufficient condition for
identifiability. However, checking whether this conditionholds in
real applications remains an open issue.

Lo Presti, Duffield, Horowitz, and Towsley (hereafter referred to
as LDHT) [6] was the first paper to investigate inference for link-
level delay distributions based on multicast probing schemes. It con-
siders nonparametric estimation for discrete delay distributions un-
der the framework in Section 1.2. Although the estimation method
in LDHT mirrors the MLE approach for link loss probabilitiesin
Cáceres et al. [8], it does not lead to MLEs for the delay distribu-
tions. We describe it in some detail below since we will be comparing
the efficiency of their method with the maximum likelihood estimator
(MLE) later in the paper.

We need some additional notation. LetAk(i) = P{Yk = i},
the probability that the cumulative delay at nodek is equal toi. Let
T (k) = (V(k), E(k)) be the subtree with root nodek (but connected
to the root node 0), and letR(k) be the receiver set of this tree. Let
γk(i) = P{minj∈R(k)Yj ≤ i}, the probability that the minimum
end-to-end delay measured in the subtreeT (k) is less than or equal to
i. Finally, letβk(i) = P{minj∈R(k)Yj−Yf(k) ≤ i}, the probability
that the minimum delay experienced on the subtreeT (k) is less than
i. Note the difference betweenγk(i) andβk(i). The former is the
total end-to-end delay starting from node 0 while the latteris the delay
accumulated only within the subtree starting at nodek.

For nodek ∈ R, there is a simple relationship betweenγk(i) and
Ak(i):

Ak(0) = γk(0), (5)

and fori > 0,

Ak(i) = γk(i) −
i−1∑

j=0

Ak(j). (6)

For a nodek not in the receiver set, LDHT show that theAk(i) can
be represented as solutions of polynomial equations of order d(k),
the number of direct descendants ofk, involving theγk ’s and the
βk ’s. Theβk ’s themselves can be expressed in terms of theγk ’s and
Ak’s. Finally, αk(i) can be expressed in terms ofAk(j), Af(k)(j)
for j = 1, . . . , i andαk(j) for j < i.

In summary, all of the expressions depend only on theγk ’s. The
estimation method in LDHT is based on substituting the following
empirical estimators of theγk ’s

γ̂k(i) =
1

n

n∑

m=1

I{Ŷk,m ≤ i}, (7)

whereŶk,m = minj∈R(k)Ŷj,m, (theŶj,m j ∈ R(k) are the end-to-
end delays in subtreeT (k) from probem) and solving the polyno-
mial equations forÂk’s and then forβ̂k ’s andα̂k ’s. The interested
reader should refer to [6] for details. It is worth noting that this solu-
tion allows for infinite delays and unbalanced tree topologies. LDHT
shows that the estimators are consistent and asymptotically normal.

Although the solution is non-iterative, it is still cumbersome to im-
plement. One has to solve complicated polynomials:b polynomials
of degreed(k) for every nodek. Additionally, for small numbers of
probes, the appropriate solution to these polynomials may not even
be positive. The second problem is the loss of information. The so-
lution uses only the empirical quantitiesγ̂k(i), i = 0, . . . , (b − 1),

the end-to-end delays that are smaller than the maximum linkdelay.
Information from the end-to-end delays betweenb andLb − 1 is ig-
nored. Discarding this information leads to considerable inefficiency,
which increases as the tree and bin sizes grow larger. We do a limited
efficiency comparison with the MLE in Section III. Furthermore, the
variance-covariance matrix of this estimator is difficult to compute
except in small trees. This severely limits the ability to develop infer-
ence procedures.

II. M AXIMUM L IKELIHOOD ESTIMATION OF THE
DISCRETEL INK DELAY DISTRIBUTION

In this section, we develop the nonparametric MLE of the delay dis-
tribution and describe the expectation-maximization (EM)algorithm
[13] for computing the MLE.

Let N~y be the number of probes that resulted in outcome~y ∈ Y.
Let g(~y; ~α) = P{~Y = ~y}. Then, the observed data correspond to
a multinomial experiment in terms of the observed end-to-end link
delays, and the log-likelihood can be expressed as

l(~α) =
∑

~y∈Y

N~y log[g(~y; ~α)]. (8)

This likelihood is a complicated function of theα’s and is difficult to
maximize directly. The problem arises from the fact that we observe
only the end-to-end delays. If the unobserved individual link delays
were available, the estimation problem is straightforward. The EM
algorithm is a natural approach for computing the MLEs in this kind
of missing data problem. It is an iterative algorithm that starts with
some initial estimate of the desired parameter values. The missing
data (or the sufficient statistics) are imputed using these estimates.
The ”complete data” (observed data supplemented with the imputed
missing data) are then used to obtain new estimates of the parame-
ter values. The process is repeated until the likelihood converges to
a maximum. Each step of the algorithm is guaranteed to increase
the likelihood, so the solution will converge to a local maximum or
stationary point [12].

Let M~x be the number of times that a particular individual link
delay set occurred. This is a sufficient statistic of our missing data. If
we knew these values, the parameter estimation would be quite sim-
ple. These are missing however, but we can impute them as follows.
Given an estimate of~α, we impute theM~x from theN~y . With these
imputed values, we can calculate new estimates of the~α and repeat
the process.

Formally, let theq-th step estimate of the delay distribution of all
the links in the tree topology be denoted by~α(q). Using this estimate,
we can computeP (q){ ~X = ~x} andP (q){~Y = ~y(~x)}. With these
values, we can now impute the required quantities in theE-step:

M
(q+1)
~x = N~y

P (q){ ~X = ~x}
P (q){~Y = ~y(~x)}

. (9)

If we let Xk,i = {~x ∈ X |xk = i}, then theM-stepis

α
(q+1)
k (i) =

1

n

∑

~x∈Xk,i

M
(q+1)
~x

. (10)

Notice that in many cases these calculations simplify, since some out-
comes~y can only arise from a single~x; in such a case the probability
ratio in (9) will just be1. For example, this occurs when~y = ~0 in
which case~x = ~0.
Example: To illustrate the process concretely, consider the follow-
ing example of a two-layer tree with maximum link delayb = 2.
Starting from an estimate~α(q), here are the steps needed to produce



α
(q+1)
1 (0). First we impute the necessary sufficient statistics in the

E-step.

M
(q+1)
0,0,0 = N0,0

M
(q+1)
0,0,1 = N0,1

M
(q+1)
0,0,2 = N0,2

M
(q+1)
0,1,0 = N1,0

M
(q+1)
0,1,1 =

α
(q)
1 (0)α

(q)
2 (1)α

(q)
3 (1)N1,1

α
(q)
1 (0)α

(q)
2 (1)α

(q)
3 (1) + α

(q)
1 (1)α

(q)
2 (0)α

(q)
3 (0)

M
(q+1)
0,1,2 =

α
(q)
1 (0)α

(q)
2 (1)α

(q)
3 (2)N1,2

α
(q)
1 (0)α

(q)
2 (1)α

(q)
3 (2) + α

(q)
1 (1)α

(q)
2 (0)α

(q)
3 (1)

M
(q+1)
0,2,0 = N2,0

M
(q+1)
0,2,1 =

α
(q)
1 (0)α

(q)
2 (2)α

(q)
3 (1)N2,1

α
(q)
1 (0)α

(q)
2 (2)α

(q)
3 (1) + α

(q)
1 (1)α

(q)
2 (1)α

(q)
3 (0)

M
(q+1)
0,2,2 =

α
(q)
1 (0)α

(q)
2 (2)α

(q)
3 (2)N2,2∑2

i=0
α

(q)
1 (i)α

(q)
2 (2 − i)α

(q)
3 (2 − i)

With our sufficient statistics, we can compute the parametervalue:

α
(q+1)
1 (0) =

1

n

2∑

i=0

2∑

j=0

M
(q+1)
0,i,j . (11)

Remark:The above presentation is a formal description of the steps
of the EM algorithm. However, in the present setting a more efficient
implementation is to cycle through all outcomes~y ∈ Y and keep a
running summing of the sufficient statistics for each element αk(i).
Hence, theq-th step of the algorithm is summarized next:

1. Initialize allα(q+1)
k (i) to zero.

2. For each~y do:

(a) For each~x ∈ {~x|~y(~x) = ~y}, useα(q) to compute
P (q)(~Y = ~y, ~X = ~x) = P (q)( ~X = ~x).

(b) Sum these probabilities to getP (q)(~Y = ~y).

(c) For each X outcome ~x, add N~y × P (q)( ~X =

~x)/P (q)(~Y = ~y) to all α
(q+1)
k (i) such thatxk = i

is part of outcome~x.

3. Divide theα
(q+1)
k (i) by n to get the next update.

Repeat this process until convergence.
Since the likelihood functionl(~α) is bounded above, the sequence

l(~α(q)) converges to some valuel? asq → ∞. Since the data arise
from a curved exponential family (one whose parameters satisfy a lin-
ear constraint), the sequence of estimates~α(q) converges to a station-
ary point~α? (see Wu [12]). Although, it cannot be guaranteed that
~α? represents the global maximum of the likelihood function, our
experience with three and four-layer trees suggests that re-running
the algorithm using several different starting points usually results in
identifying the global maximum.

Proposition 1 The ML estimator based on end-to-end quantized
multicast measurements isstrongly consistent, asymptotically normal
andfully efficient; i.e.

~αMLE → ~α0, a.s., (12)

where~α0 is the true parameter vector, and
√

n(~αMLE − ~α0) ⇒ Z, (13)

whereZ ∼ N{~0, I−1(~α)}, with I(~α) denoting the Fisher informa-
tion matrix.
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Figure 3: Example 1: Convergence of the log-likelihood func-
tion.
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Figure 4: Example 1: Convergence of the estimat of~α1.

Sketch of the proof: Some tedious but straightforward algebra shows
that our delay model, which corresponds to a multinomial experi-
ment, satisfies all the conditions posited in Lehmann [10]. Complete
details of the proofs can be found in [4] and [7]. The proposition then
follows from standard results.

III. N UMERICAL RESULTS AND EFFICIENCY
CONSIDERATIONS

In this section we provide some numerical results on the convergence
of the MLE using the EM algorithm and compare the efficiency of
the heuristic estimator in Lo Presti et al. [6] with the MLE.

We generated data using several scenarios and computed the MLE
under the true model to assess the convergence properties ofthe EM
algorithm.
Example 1: For the first scenario, we use a three-layer tree with a
maximum link delay of 2. The link delay distribution is identical for
every link in the tree:

αk(0) =
4

9
, αk(1) =

1

3
, αk(2) =

2

9
. (14)

We generated data forn = 100, 000 probes and fit our link delay
estimator. Figure 3 shows the log-likelihood at each iteration. Fig-
ures 4, 5, and 6 show the convergence for links on different layers of
the tree. It can be seen that the estimates converge fairly quickly and
are quite close to their true values (represented by the dotted lines).
Additional numerical work reported in [4] indicates that the quality
of the estimates is largely determined by the sample size.
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Figure 5: Example 1: Convergence of the estimates of~α2.
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Figure 6: Example 1: Convergence of the estimates of~α4.

Example 2: We generated 100,000 probes from a three-layer tree
with a maximum link delay of 4. Once again, the same link delay
distribution was assigned to each link:

αk(0) =
1

3
, αk(1) =

4

15
, αk(2) =

1

5
, (15)

αk(3) =
2

15
, αk(4) =

1

15
.

Figure 7 shows the log-likelihood at each iteration. The algorithm
requires a fairly large number of iterations to converge forthis exam-
ple. We plan to investigate the use of methods in the literature for
speeding up the EM algorithm, including the use of the parameter ex-
pansion method in Liu, Rubin, and Wu [5]. Figures 8, 9, and 10 show
the convergence of the link distributions for one link from each level
of the tree. The dotted lines show the true values. The algorithm does
a good job of estimating the true value even with the additionof more
bins to the link delay distribution.

Now we turn to the efficiency comparison of the LDHT estimator
with the MLE using a limited simulation study on two-layer trees
with maximum delays of 2 and 4. For both trees, all links shared a
common delay distribution.
Comparison 1: We used the following link delay distribution:

αk(0) =
1

2
, αk(1) =

1

3
, αk(2) =

1

6
. (16)

We generated 100,000 probes and fit both estimators to the data. The
whole process was repeated 1000 times in order to assess the accu-
racy and precision of the two estimators. The mean of the estimates
for both estimators was very close to the true value. The variances
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Figure 7: Example 2: Covergence of the log-likelihood func-
tion.
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Figure 8: Example 2: Covergence of estimates of~α1.

of the free parameters (we ignoreαk(b) for each link since the prob-
abilities must sum to one) show some differences. Table 1 gives the
ratios of the variances for the free parameters. For the firstlink, the
two estimates are fairly close although there is some improvement
by using the MLE. For the other two nodes, the difference is more
pronounced, particularly with regard to the second bin: thevariance
for the LDHT estimate is about two and half times larger than the
variance for the MLE.
Comparison 2: We followed the same procedure as above using the
following link delay distribution:

αk(0) =
2

5
, αk(1) =

1

5
, αk(2) =

1

5
, (17)

αk(3) =
1

10
, αk(4) =

1

10
. (18)

param LDHT/MLE

α1(0) 1.2739
α1(1) 1.2805
α2(0) 1.5594
α2(1) 2.5274
α3(0) 1.5724
α3(1) 2.6125

Table 1: Variance ratios for the two estimators in the three bin
problem.
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Figure 9: Example 2: Covergence of estimates of~α2.
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Figure 10: Example 2: Covergence of estimates of~α4.

Again, the accuracy of both estimators is quite good, but we see sim-
ilar differences in the variances. See Table 2 for the variance ratios
for ~α1 and~α2 (the behavior for~α3 is very similar to~α2). As before,
there is slight improvement in the variance of the estimatesfor link
one and more pronounced differences for the other links. With more
bins, we can see an even greater improvement in the performance
of the MLE as its variance is about a fourth of the variance forthe
LDHT estimate. We expect that these differences will be evenmore
pronounced on larger trees with more delay bins.

IV. CONCLUSIONS

We have developed the nonparametric maximum likelihood estima-
tor for the discrete link delay distributions based on multicast probing

param LDHT/MLE

α1(0) 1.7765
α1(1) 1.6989
α1(2) 1.2649
α1(3) 1.3059
α2(0) 2.2407
α2(1) 2.8871
α2(2) 2.9190
α2(3) 4.3679

Table 2: Variance ratios for the two estimators in the five bin
problem.

schemes. The EM algorithm can be used to compute the estimator.
We have shown that this estimator is consistent and asymptotically
normal. It compares favorably with a previous estimator as it has
smaller variance and avoids certain problems inherent to that esti-
mator. A very limited simulation study is used to compare thetwo
methods and demonstrate the improvement in efficiency.

There are several directions that will be pursued as part of future
work. The discrete delay problem addressed here is an approxima-
tion to reality, and we plan to study nonparametric estimation of un-
derlying continuous delay distributions with point pass at0 and∞
(corresponding to lost packets). Additionally, parametric estimation
would also be useful and would simplify the continuous density esti-
mation problem. Extensions to more general tree topologieswill also
be considered. In a designed test, a binary and symmetric tree can al-
ways be arranged, but this may leave out certain links. The ability to
study networks having more general topologies is desirable. Finally,
we will explore inference under various temporal and spatial models.
This would be quite useful for identifying and localizing anomalous
behavior in networks.
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